题目内容

12.若反比例函数y=$\frac{1-3k}{x}$的图象经过第二、四象限,则 k的取值范围是k>$\frac{1}{3}$.

分析 根据反比例函数的性质得1-3k<0,然后解不等式即可.

解答 解:根据题意得1-3k<0,
解得k>$\frac{1}{3}$.
故答案为k>$\frac{1}{3}$.

点评 本题考查了反比例函数的性质:反比例函数y=$\frac{k}{x}$(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网