题目内容

18.如图,PA,PB分别与⊙O相切于A、B,点C在劣弧AB上(不与A,B重合),若∠APB=70°,则∠ACB=(  )
A.140°B.145°C.110°D.125°

分析 连结OA、OB,∠ADB为弧AB所对的圆周角,如图,根据切线的性质得∠OAP=∠OBP=90°,再利用四边形内角和可计算出∠AOB=110°,接着根据圆周角定理得到∠D=$\frac{1}{2}$∠AOB=55°,然后根据圆内接四边形的性质计算∠ACB的度数.

解答 解:连结OB,∠ADB为弧AB所对的圆周角,如图
∵PA,PB分别与⊙O相切于A,B两点,
∴OA⊥PA,OB⊥PB,
∴∠OAP=∠OBP=90°,
∴∠AOB+∠P=180°,
∴∠AOB=180°-70°=110°,
∴∠D=$\frac{1}{2}$∠AOB=55°,
∴∠ACB=180°-∠D=125°.
故选D.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了圆周角定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网