题目内容
13.现有多个全等直角三角形,先取三个拼成如图1所示的形状,R为DE的中点,BR分别交AC,CD于P,Q,易得BP:QP:QR=3:1:2.(1)若取四个直角三角形拼成如图2所示的形状,S为EF的中点,BS分别交AC,CD,DE于P,Q,R,则BP:PQ:QR:RS=4:1:3:2
(2)若取五个直角三角形拼成如图3所示的形状,T为FG的中点,BT分别交AC,CD,DE,EF于P,Q,R,S,则BP:PQ:QR:RS:ST=5:1:4:2:3.
分析 (1)首先证明△BCQ∽△BES,从而可求得CQ=$\frac{1}{4}EF$,DQ=$\frac{3}{4}$EF,然后证明△BAP∽△QDR得到BP:QR=4:3从而可知:BP:PQ:QR=4:1:3,然后由DQ∥SE,可知:QR:RS=DQ:SE=3:2,从而可求得BP:PQ:QR:RS=4:1:3:2;
(2)由AC∥DE∥GF,可知:△BPC∽△BER∽BTG,能够求得:AP:DR:FT=5:4:3,然后再证明△BAP∽△QDR∽△SFT.求得BP:QR:ST=AP:DR:FT=5:4:3,因为BP:QR:RT=5:4:5,所以可求得:BP:PQ:QR:RS:ST=5:1:4:2:3.
解答 解:(1)∵四个直角三角形是全等三角形,
∴AB=EF=CD,AB∥EF∥CD,BC=CE,AC∥DE,
∴BP:PR=BC:CE=1,
∵CD∥EF,
∴△BCQ∽△BES.
又∵BC=CE
∴CQ=$\frac{1}{2}SE$=$\frac{1}{4}EF$,
∴DQ=$\frac{3}{4}EF$
∵AB∥CD,
∴∠ABP=∠DQR.
又∵∠BAP=∠QDR,
∴△BAP∽△QDR.
∴BP:QR=4:3.
∴BP:PQ:QR=4:1:3,
∵DQ∥SE,
∴QR:RS=DQ:SE=3:2,
∴BP:PQ:QR:RS=4:1:3:2.
故答案为:4:1:3:2;
(2)∵五个直角三角形是全等直角三角形
∴AB=CD=EF,AB∥CD∥EF,AC=DE=GF,AC∥DE∥GF,
BC=CE=EG,
∴BP=PR=RT,
∵AC∥DE∥GF,
∴△BPC∽△BER∽BTG,
∴PC=$\frac{1}{3}TG$=$\frac{1}{6}FG$,RE=$\frac{2}{3}TG$=$\frac{1}{3}$FG,
∴AP=$\frac{5}{6}FG$,DR=$\frac{2}{3}FG$,FT=$\frac{1}{2}FG$
∴AP:DR:FT=5:4:3.
∵AC∥DE∥GF,
∴∠BPA=∠QRD=∠STF.
又∵∠BAP=∠QDR=∠SFT,
∴△BAP∽△QDR∽△SFT.
∴BP:QR:ST=AP:DR:FT=5:4:3.
又∵BP:QR:RT=5:4:5,
∴BP:PQ:QR:RS:ST=5:(5-4):4:(5-3):3=5:1:4:2:3.
故答案为:5:1:4:2:3.
点评 本题主要考查的是相似三角形的判定和性质,找出图中的相似三角形,求得相应线段之间的比例关系是解题的关键.
| A. | 140° | B. | 145° | C. | 110° | D. | 125° |
| 等级 | 票价(元/张) |
| A | 150 |
| B | 300 |
| C | 500 |
(2)小明想用全部资金预定指定A等级门票、B等级和C等级门票共12张,他的想法能实现吗?若不能,请说明理由;若可以,请求出各种类型门票的张数.