题目内容
14.分析 由?ABCD的周长为26cm,对角线AC、BD相交于点O,若△AOD的周长比△AOB的周长多3cm,可得AB+AD=13cm,AD-AB=3cm,求出AB和AD的长,得出BC的长,再由直角三角形斜边上的中线性质即可求得答案.
解答 解:∵?ABCD的周长为26cm,
∴AB+AD=13cm,OB=OD,
∵△AOD的周长比△AOB的周长多3cm,
∴(OA+OD+AD)-(OA+OB+AB)=AD-AB=3cm,
∴AB=5cm,AD=8cm.
∴BC=AD=8cm.
∵AC⊥AB,E是BC中点,
∴AE=$\frac{1}{2}$BC=4cm;
故答案为:4.
点评 此题考查了平行四边形的性质、直角三角形斜边上的中线性质.熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.
练习册系列答案
相关题目
2.下列计算正确的是( )
| A. | 3m+2y=5my | B. | 3a2+2a3=5a5 | C. | 4a2-3a2=1 | D. | -2ba2+a2b=-a2b |