题目内容

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.
(1)求这条抛物线的解析式;
(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由.
考点:二次函数综合题
专题:
分析:(1)本题需先根据已知条件,过C点,设出该抛物线的解析式为y=ax2+bx+2,再根据过A,B两点,即可得出结果;
(2)由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.由相似关系求出点E的坐标.
解答:解:(1)∵该抛物线过点C(0,2),
∴可设该抛物线的解析式为y=ax2+bx+2.
将A(-1,0),B(4,0)代入,
a-b+2=0
16a+4b+2=0
,解得
a=-
1
2
b=
3
2

∴抛物线的解析式为:y=-
1
2
x2+
3
2
x+2.
(2)存在.
由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.

在Rt△BOC中,OC=2,OB=4,
∴BC=
22+42
=2
5

在Rt△BOC中,设BC边上的高为h,则
1
2
×2
5
h=
1
2
×2×4,
∴h=
4
5
5

∵△BEA∽△COB,设E点坐标为(x,y),
AB
BC
=
|y|
4
5
5

∴y=±2
将y=2代入抛物线y=-
1
2
x2+
3
2
x+2,
得x1=0,x2=3.
当y=-2时,不合题意舍去.
∴E点坐标为(0,2),(3,2).
点评:本题考查了二次函数的综合题,涉及相似三角形的性质的运用,勾股定理的运用,解题的关键是正确求出函数的解析式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网