题目内容

12.如图,在△ABC中,中线AD、CE交于点O,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,那么向量$\overrightarrow{AO}$用向量$\overrightarrow{a}$、$\overrightarrow{b}$表示为(  )
A.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$D.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$

分析 利用三角形的重心性质得到:AO=$\frac{2}{3}$AD;结合平面向量的三角形法则解答即可.

解答 解:∵在△ABC中,AD是中线,$\overrightarrow{BC}$=$\overrightarrow{b}$,
∴$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BC}$=$\frac{1}{2}$$\overrightarrow{b}$.
∴$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$.
又∵点O是△ABC的重心,
∴AO=$\frac{2}{3}$AD,
∴$\overrightarrow{AO}$=$\frac{2}{3}$$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$.
故选:B.

点评 此题主要考查了平面向量与重心有关知识,根据重心知识得出AO=$\frac{2}{3}$AD是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网