题目内容
13.(1)如图1,在菱形ABCD中,CE=CF,求证:AE=AF.(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.
分析 (1)根据菱形的性质,利用SAS判定△ABE≌△ADF,从而求得AE=AF;
(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠PAO的度数,然后利用圆周角定理来求∠ABC的度数.
解答 证明:(1)∵四边形ABCD是菱形,
∴AB=BC=CD=AD,∠B=∠D
∵CE=CF,
∴BE=DF
在△ABE与△ADF中,
$\left\{\begin{array}{l}{AB=AD}\\{∠B=∠D}\\{BE=DF}\end{array}\right.$,
∴△ABE≌△ADF.
∴AE=AF;
(2)∵AB是⊙O的直径,直线PA与⊙O相切于点A,
∴∠PAO=90°.
又∵∠OPA=40°,
∴∠POA=50°,
∴∠ABC=$\frac{1}{2}$∠POA=25°.
点评 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.同时考查了切线的性质,圆周角定理.圆的切线垂直于经过切点的半径.
练习册系列答案
相关题目
5.下列说法正确的有( )
(1)直角三角形三条高线的交点在三角形内;
(2)平面上关于某直线对称的两个图形一定全等;
(3)等腰三角形顶角的平分线就是它的对称轴;
(4)可能性很大的事件在一次试验中一定会发生.
(1)直角三角形三条高线的交点在三角形内;
(2)平面上关于某直线对称的两个图形一定全等;
(3)等腰三角形顶角的平分线就是它的对称轴;
(4)可能性很大的事件在一次试验中一定会发生.
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
2.下列计算正确的是( )
| A. | 3$\sqrt{2}$-$\sqrt{2}$=3 | B. | $\sqrt{2}$+$\sqrt{5}$=$\sqrt{7}$ | C. | $\sqrt{2}$×$\sqrt{5}$=$\sqrt{10}$ | D. | $\sqrt{(-15)^{2}}$=-15 |