题目内容

如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是______________.

4 【解析】动点问题,等腰直角三角形的性质,平角定义,勾股定理,二次函数的最值。 设AC=x,则BC=2-x, ∵△ACD和△BCE都是等腰直角三角形, ∴∠DCA=45°,∠ECB=45°,DC=,CE=。 ∴∠DCE=90°。 ∴DE2=DC2+CE2=()2+[]2=x2-2x+2=(x-1)2+1。 ∴当x=1时,DE2取得最小值,DE也取得最小值...
练习册系列答案
相关题目

如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为(  )

A. 150° B. 130° C. 120° D. 100°

C 【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABE,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,∵∠BED=150°,∴∠ABE=∠AEB=30°,∴∠A=180°﹣∠ABE﹣∠AEB=120°.故选C.

请用“一定”、“很可能”、“可能性极小”、“可能”、“不太可能”、“不可能”等语言来描述下列事件的可能性.

(1)买20注彩票,获特等奖500万.

(2)袋中有20个球,1个红的,19个白的,从中任取一球,取到红色的球.

(3)掷一枚均匀的骰子,6点朝上.

(4)100件产品中有2件次品,98件正品,从中任取一件,刚好是正品.

(5)早晨太阳从东方升起.

(6)小丽能跳100m高.

(1)可能性极小;(2)不太可能;(3)可能;(4)很可能;(5)一定;(6)不可能. 【解析】试题分析:事件的可能性主要看事件的类型,事件的类型决定了可能性及可能性的大小. 试题解析:(1)买20注彩票,获特等奖500万,可能性极小; (2)袋中有20个球,1个红的,19个白的,从中任取一球,取到红色的球,不太可能; (3)掷一枚均匀的骰子,6点朝上,可能; (4)100件产品...

下列成语所描述的事件是必然发生的是(  )

A. 水中捞月 B. 拔苗助长 C. 守株待兔 D. 瓮中捉鳖

D 【解析】试题分析:必然事件是指一定会发生的事件;不可能事件是指不可能发生的事件;随机事件是指可能发生也可能不发生的事件。根据定义,对每个选项逐一判断A选项,不可能事件 B选项,不可能事件 C选项,随机事件D选项,必然事件

在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB、BC两边),设AB=xm.

(1)若花园的面积为192m2,求x的值;

(2)若在P处有一棵树与墙CD、AD的距离分别是13m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.

(1)12或16(2)当x=13时,S最大=195 【解析】试题分析:(1)根据题意得出长×宽=192,进而得出答案; (2)由在P处有一棵树与墙CD,AD的距离分别是13m和6m,求出x的取值范围,根据二次的性质求解即可. 试题解析:(1)(28-x)x=192,解得x1=12,x2=16, ∴x的值为12或16. (2)∵S=x(28-x)=-x2+28x(6≤x≤1...

在羽毛球比赛中,某次羽毛球的运动路线可以看做是抛物线y=-x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的表达式是( )

A. y=-x2+x+1 B. y=-x2+x-1 C. y=-x2-x+1 D. y=-x2-x-1

A 【解析】根据已知出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,得出B点的坐标为:(0,1),A点坐标为(4,0),代入解析式y=-x2+bx+c,即可求出b=,c=1,即可得出这条抛物线的解析式是:y=-x2+x+1. 故选:A.

如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB',则点B'的坐标为_____.

(4,2) 【解析】试题分析:画出旋转后的图形位置,根据图形求解. 试题解析:AB旋转后位置如图所示. B′(4,2).

如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.

(1)请用配方法求二次函数图象的最高点P的坐标;

(2)小球的落点是A,求点A的坐标;

(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;

(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.

(1)最高点P的坐标为(2,4);(2)点A的坐标为(, );(3);(4)点M的坐标为(, ) 【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标; (2)联立两解析式,可求出交点A的坐标; (3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解; (4)过P...

已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为__.

14cm 【解析】两直线平行,内错角相等,以及根据角平分线性质,可得△OBD、△EOC均为等腰三角形,由此把△AEF的周长转化为AC+AB. 【解析】 ∵DE∥BC,∴∠DOB=∠OBC,又∵BO是∠ABC的角平分线,∴∠DBO=∠OBC,∴∠DBO=∠DOB,∴BD=OD,同理:OE=EC, ∴△ADE的周长=AD+OD+OE+EC=AD+BD+AE+EC=AB+AC=14c...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网