题目内容

如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为(  )

A. 150° B. 130° C. 120° D. 100°

C 【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABE,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,∵∠BED=150°,∴∠ABE=∠AEB=30°,∴∠A=180°﹣∠ABE﹣∠AEB=120°.故选C.
练习册系列答案
相关题目

如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上

(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;

(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.

(1)见解析;(2)见解析. 【解析】试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO; (2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论. 试题解析: 证明:(1)选取①②, ...

如图,在?ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为(  )

A. B. C. D.

C 【解析】∵∠ABC的平分线交CD于点F, ∴∠ABE=∠CBE, ∵四边形ABCD是平行四边形, ∴DC∥AB, ∴∠CBE=∠CFB=∠ABE=∠E, ∴CF=BC=AD=8,AE=AB=12, ∵AD=8, ∴DE=4, ∵DC∥AB, ∴, ∴, ∴EB=6, ∵CF=CB,CG⊥BF, ∴BG=BF=2...

(2016浙江省衢州市)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=____________.

4或﹣2. 【解析】试题解析:根据题意画图如下: 以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣2,1),则x=4或﹣2;故答案为:4或﹣2.

如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为( )

A. 6 B. 12 C. 20 D. 24

D 【解析】试题分析:在Rt△CBE中,由勾股定理可求得EC=5,又因AC=10,所以AE=EC=5.根据对角线互相平分的四边形是平行四边形可判定四边形ABCD是平行四边形,所以平行四边形ABCD的面积为BC×BD=4×6=24,故答案选D.

如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:①abc<0 ②b2﹣4ac>0 ③4b+c<0 ④若B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1>y2⑤当﹣3≤x≤1时,y≥0,

其中正确的结论是(填写代表正确结论的序号)__________________.

②③⑤ 【解析】【解析】 由图象可知,a<0,b<0,c>0,∴abc>0,故①错误. ∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确. ∵抛物线对称轴为x=﹣1,与x轴交于A(﹣3,0),∴抛物线与x轴的另一个交点为(1,0),∴a+b+c=0,﹣ =﹣1,∴b=2a,c=﹣3a,∴4b+c=8a﹣3a=5a<0,故③正确. ∵B(﹣,y1)、C(﹣,y2)为函...

已知抛物线y=x2-mx+m-2.

(1)求证此抛物线与x轴有两个交点;

(2)若抛物线与x轴的一个交点为(2,0),求m的值及抛物线与x轴另一交点坐标.

(1)证明见解析(2)抛物线与x轴另一交点坐标为(0,0) 【解析】试题分析:(1)欲证明抛物线与x轴有两个不同的交点,只要证明△>0即可. (2)把(2,0)代入抛物线解析式,即可得到m的值,从而得到抛物线的解析式,令y=0,解方程即可得到结论. 试题解析:【解析】 (1)∵Δ=(-m)2-4(m-2)=m2-4m+8=(m-2)2+4>0, ∴此抛物线与x轴有两个交点. ...

如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是______________.

4 【解析】动点问题,等腰直角三角形的性质,平角定义,勾股定理,二次函数的最值。 设AC=x,则BC=2-x, ∵△ACD和△BCE都是等腰直角三角形, ∴∠DCA=45°,∠ECB=45°,DC=,CE=。 ∴∠DCE=90°。 ∴DE2=DC2+CE2=()2+[]2=x2-2x+2=(x-1)2+1。 ∴当x=1时,DE2取得最小值,DE也取得最小值...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网