题目内容

19.如图,在△ABC中,以点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′,B′分别是A,B的对应点,且点B′在AB边上,按照上述方法旋转△A′B′C,…,这样共旋转四次恰好构成一个旋转对称图形.
(1)求∠BCB′的度数.
(2)判断△BCB′的形状.

分析 (1)根据旋转的性质可知旋转对称图形是正五边形,再根据正五边形的旋转角列式计算即可得解;
(2)根据旋转的性质可得CB=CB′,再根据等腰三角形的判定解答.

解答 解:(1)∵旋转四次恰好构成一个旋转对称图形,
∴旋转对称图形是正五边形,
∴∠BCB′=360°÷5=72°;

(2)∵△ABC旋转到△A′B′C的位置,
∴CB=CB′,
∴△BCB′是等腰三角形.

点评 本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网