题目内容

12.如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.
(1)判断直线PC与⊙O的位置关系,并说明理由;
(2)若tan∠P=$\frac{3}{4}$,AD=6,求线段AE的长.

分析 (1)结论:PC是⊙O的切线.只要证明OC∥AD,推出∠OCP=∠D=90°,即可.
(2)由OC∥AD,推出$\frac{OC}{AD}$=$\frac{OP}{AP}$,即$\frac{r}{6}$=$\frac{10-r}{10}$,解得r=$\frac{15}{4}$,由BE∥PD,AE=AB•sin∠ABE=AB•sin∠P,由此即可计算.

解答 解:(1)结论:PC是⊙O的切线.
理由:连接OC.
∵AC平分∠EAB,
∴∠EAC=∠CAB,
又∵∠CAB=∠ACO,
∴∠EAC=∠OCA,
∴OC∥AD,
∵AD⊥PD,
∴∠OCP=∠D=90°,
∴PC是⊙O的切线.

(2)连接BE.在Rt△ADP中,∠ADP=90°,AD=6,tan∠P=$\frac{3}{4}$,
∴PD=8,AP=10,设半径为r,
∵OC∥AD,
∴$\frac{OC}{AD}$=$\frac{OP}{AP}$,即$\frac{r}{6}$=$\frac{10-r}{10}$,
解得r=$\frac{15}{4}$,
∵AB是直径,
∴∠AEB=∠D=90°,
∴BE∥PD,
∴AE=AB•sin∠ABE=AB•sin∠P=$\frac{15}{4}$×$\frac{3}{5}$=$\frac{9}{2}$.

点评 本题考查直线与圆的位置关系、切线的判定、解直角三角形、平行线的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网