题目内容

8.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.
(1)如图1,当∠ABC=45°时,求证:AD=DE;
(2)如图2,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由.

分析 (1)首先过点D作DF⊥BC,交AB于点F,得出∠BDE=∠ADF,以及∠EBD=∠AFD,再得出△BDE≌△FDA(ASA),求出即可;
(2)首先过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE∽△GDA即可得出答案.

解答 (1)证明:如图1,过点D作DF⊥BC,交AB于点F,
则∠BDE+∠FDE=90°,
∵DE⊥AD,
∴∠FDE+∠ADF=90°,
∴∠BDE=∠ADF,
∵∠BAC=90°,∠ABC=45°,
∴∠C=45°,
∵MN∥AC,
∴∠EBD=180°-∠C=135°,
∵∠BFD=45°,DF⊥BC,
∴∠BFD=45°,BD=DF,
∴∠AFD=135°,
∴∠EBD=∠AFD,
在△BDE和△FDA中
$\left\{\begin{array}{l}{∠EBD=∠AFD}\\{BD=DF}\\{∠BDE=∠ADF}\end{array}\right.$,
∴△BDE≌△FDA(ASA),
∴AD=DE;

(2)解:DE=$\sqrt{3}$AD,
理由:如图2,过点D作DG⊥BC,交AB于点G,
则∠BDE+∠GDE=90°,
∵DE⊥AD,
∴∠GDE+∠ADG=90°,
∴∠BDE=∠ADG,
∵∠BAC=90°,∠ABC=30°,
∴∠C=60°,
∵MN∥AC,
∴∠EBD=180°-∠C=120°,
∵∠ABC=30°,DG⊥BC,
∴∠BGD=60°,
∴∠AGD=120°,
∴∠EBD=∠AGD,
∴△BDE∽△GDA,
∴$\frac{AD}{DE}$=$\frac{DG}{BD}$,
在Rt△BDG中,$\frac{DG}{BD}$=tan30°=$\frac{\sqrt{3}}{3}$,
∴DE=$\sqrt{3}$AD.

点评 此题主要考查了全等三角形的判定与性质以及相似三角形的判定与性质,得出△EBD∽△AGD是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网