题目内容

2.请同学们将下面分式方程的解题过程补充完整.
解方程$\frac{1}{x-4}+\frac{4}{x-1}=\frac{2}{x-3}+\frac{3}{x-2}$.
解:$\frac{1}{x-4}-\frac{3}{x-2}=\frac{2}{x-3}-\frac{4}{x-1}$,
$\frac{()}{{x}^{2}-6x+8}=\frac{()}{{x}^{2}-4x+3}$,
∴-2x+10=0或$\frac{1}{{x}^{2}-6x+8}=\frac{1}{{x}^{2}-4x+3}$,
∴由-2x+10=0,得x=5,
∴由$\frac{1}{{x}^{2}-6x+8}=\frac{1}{{x}^{2}-4x+3}$,得x2-6x+8=x2-4x+3,解得x=2.5.
经检验,x=5,x=2.5都是原分式方程的解.

分析 根据题目可以将方程的解答过程写出来,从而可以得到问题的答案.

解答 解:$\frac{1}{x-4}-\frac{3}{x-2}=\frac{2}{x-3}-\frac{4}{x-1}$,
$\frac{(x-2)-3(x-4)}{{x}^{2}-6x+8}=\frac{2(x-1)-4(x-3)}{{x}^{2}-4x+3}$,
$\frac{-2x+10}{{x}^{2}-6x+8}=\frac{-2x+10}{{x}^{2}-4x+3}$,
∴-2x+10=0或$\frac{1}{{x}^{2}-6x+8}=\frac{1}{{x}^{2}-4x+3}$,
∴由-2x+10=0,得x=5,
∴由$\frac{1}{{x}^{2}-6x+8}=\frac{1}{{x}^{2}-4x+3}$,得x2-6x+8=x2-4x+3,解得x=2.5.
经检验,x=5,x=2.5都是原分式方程的解.
故答案为:-2x+10=0;-2x+10,5;2.5;5,2.5.

点评 本题考查解分式方程,解题的关键是根据题目中已给出的信息,将需要填写的内容补充完整.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网