题目内容

6.如图,已知矩形ABCD中,点E在AB上,点O是对角线AC的中点,沿CE折叠后,点B恰好与点O重合,若BC=6,则折痕CE的长为(  )
A.2$\sqrt{3}$B.4$\sqrt{3}$C.8D.10

分析 由点O是矩形ABCD的中心,E是AB上的点沿CE折叠后,点B恰好与点O重合,可求得∠BAC=30°,继而可得∠BCE=30°,继而求得折痕CE的长.

解答 解:∵点O是对角线AC的中点,E是AB上的点沿CE折叠后,点B恰好与点O重合,
∴AC=2OC=2BC,∠B=90°,∠ACE=∠BCE,
∴sin∠BAC=$\frac{BC}{AC}$=$\frac{6}{12}=\frac{1}{2}$,
∴∠BAC=30°,
∴∠ACB=90°-∠BAC=60°,
∴∠BCE=30°,
∴CE=$\frac{BC}{cos30°}$=$\frac{6}{\frac{\sqrt{3}}{2}}$=4$\sqrt{3}$.
故选B.

点评 此题考查了折叠的性质、矩形的性质以及三角函数的性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网