题目内容

4.如图,在矩形ABCD中,E是BC边的中点,将△ABE沿AE所在直线折叠得到△AGE,延长AG交CD于点F,已知CF=2,FD=1,则BC的长是(  )
A.3$\sqrt{2}$B.2$\sqrt{6}$C.2$\sqrt{5}$D.2$\sqrt{3}$

分析 首先连接EF,由折叠的性质可得BE=EG,又由E是BC边的中点,可得EG=EC,然后证得Rt△EFG≌Rt△EFC(HL),继而求得线段AF的长,再利用勾股定理求解,即可求得答案.

解答 解:连接EF,
∵E是BC的中点,
∴BE=EC,
∵△ABE沿AE折叠后得到△AFE,
∴BE=EG,
∴EG=EC,
∵在矩形ABCD中,
∴∠C=90°,
∴∠EGF=∠B=90°,
∵在Rt△EFG和Rt△EFC中,
$\left\{\begin{array}{l}{EG=EC}\\{EF=EF}\end{array}\right.$,
∴Rt△EFG≌Rt△EFC(HL),
∴FG=CF=2,
∵在矩形ABCD中,AB=CD=CF+DF=2+1=3,
∴AG=AB=3,
∴AF=AG+FG=3+2=5,
∴BC=AD=$\sqrt{A{F}^{2}-D{F}^{2}}$=$\sqrt{{5}^{2}-{1}^{2}}$=2$\sqrt{6}$.
故选B.

点评 此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.注意证得FG=FC是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网