题目内容

16.在平面直角坐标系中,已知一次函数y=-$\frac{3}{4}$x+6与x,y轴分别交于A,B两点,点C(0,n)是y轴上一点,把坐标平面沿直线AC折叠,点B刚好落在x轴上,则点C的坐标是(  )
A.(0,3)B.(0,$\frac{4}{3}$)C.(0,$\frac{8}{3}$)D.(0,$\frac{7}{3}$)

分析 过C作CD⊥AB于D,先求出A,B的坐标,分别为A(8,0),B(0,6),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=8,则DB=10-8=2,BC=6-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.

解答 解:过C作CD⊥AB于D,如图,
对于直线y=-$\frac{3}{4}$x+6,
当x=0,得y=6;当y=0,x=8,
∴A(8,0),B(0,6),即OA=8,OB=6,
∴AB=10,
又∵坐标平面沿直线AC折叠,使点B刚好落在x轴上,
∴AC平分∠OAB,
∴CD=CO=n,则BC=6-n,
∴DA=OA=8,
∴DB=10-8=2,
在Rt△BCD中,DC2+BD2=BC2
∴n2+22=(6-n)2,解得n=$\frac{8}{3}$,
∴点C的坐标为(0,$\frac{8}{3}$).
故选:C.

点评 本题考查了求直线与坐标轴交点的坐标的方法:分别令x=0或y=0,求对应的y或x的值;也考查了折叠的性质和勾股定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网