题目内容
15.(1)如图①,D是等边三角形ABC的AB边上一个动点(点D与点A,B不重合),连接DC,以DC为边在BC上方作等边三角形DCE,连接AE,求证:∠B=∠EAC;(2)如图②,当动点D运动至等边三角形ABC边BA的延长线上时,其他作法与(1)相同,(1)中结论∠B=∠EAC还成立吗?请说明理由;
(3)如图③,在等腰三角形ABC中,AB=AC,D是AB上任意一点(点D与A,B不重合),连结CD,以CD为底边作等腰三角形ECD,使顶角∠DEC=∠BAC,连结AE,试探究∠B与∠EAC的数量关系,并说明理由.
分析 (1)根据等边三角形的性质得到AB=AC,CD=CE,∠ACB=∠DCE=60°,利用SAS可证明△BCD≌△ACE,继而得出结论;
(2)和(1)的思路完全一样;
(3)首先得出∠ACB=∠ECD,从而判定△ABC∽△EDC,得到$\frac{AC}{CE}$=$\frac{BC}{CD}$,根据∠BCD=∠ACB-∠ACD,∠ACE=∠DCE-∠ACD,于是得到∠BCD=∠ACE,推出△BCD∽△ACE,即可得出结论.
解答 (1)证明:∵△ABC、△CDE是等边三角形,
∴AB=AC,CD=CE,∠ACB=∠DCE=60°,
∴∠BCD=∠ACE,
∵在△BCD和△ACE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠BCD=∠ACE}\\{CD=CE}\end{array}\right.$
∴△BCD≌△ACE(SAS),
∴∠B=∠EAC;
(2)解:结论∠B=∠EAC仍成立;
理由如下:∵△ABC、△CDE是等边三角形,
∴AB=AC,CD=CE,∠BCA=∠DCE=60°,
∴∠BCD=∠ACE,
∵在△BCD和△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BCD=∠ACE}\\{CD=CE}\end{array}\right.$
∴△BCD≌△ACE(SAS),
∴∠B=∠EAC;
(3)解:∠B=∠EAC;
理由如下:∵AB=AC,ED=EC,顶角∠BAC=∠DEC,
∴底角∠ACB=∠ECD,
∴△ABC∽△EDC,
∴$\frac{AC}{CE}$=$\frac{BC}{CD}$,
又∵∠BCD=∠ACB-∠ACD,∠ACE=∠DCE-∠ACD,
∴∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠B=∠CAE.
点评 本题考查了相似三角形的判定与性质、全等三角形的判定与性质,解答本题的关键是仔细观察图形,找到全等(相似)的条件,利用全等(相似)的性质证明结论.
| A. | -5吨 | B. | +5吨 | C. | -8吨 | D. | +8吨 |