题目内容

11.三元一次方程组$\left\{\begin{array}{l}{x+y-z=3}\\{x+y+z=1}\\{-x+2y+z=3}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=0}\\{y=2}\\{z=-1}\end{array}\right.$.

分析 方程组利用加减消元法求出解即可.

解答 解:$\left\{\begin{array}{l}{x+y-z=3①}\\{x+y+z=1②}\\{-x+2y+z=3③}\end{array}\right.$,
①+②得:x+y=2④,
①+③得:3y=6,
解得:y=2,
把y=2代入④得:x=0,
把x=0,y=2代入①得:z=-1,
则方程组的解为$\left\{\begin{array}{l}{x=0}\\{y=2}\\{z=-1}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{x=0}\\{y=2}\\{z=-1}\end{array}\right.$

点评 此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网