题目内容

9.如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.
(1)若∠BAD=45°,求证:△ACD为等腰三角形;
(2)若△ACD为直角三角形,求∠BAD的度数.

分析 (1)根据等腰三角形的性质求出∠B=∠C=30°,根据三角形内角和定理求出∠BAC=120°,求出∠CAD=∠ADC,根据等腰三角形的判定得出即可;
(2)有两种情况:①当∠ADC=90°时,当∠CAD=90°时,求出即可.

解答 (1)证明:∵AB=AC,∠B=30°,
∴∠B=∠C=30°,
∴∠BAC=180°-30°-30°=120°,
∵∠BAD=45°,
∴∠CAD=∠BAC-∠BAD=120°-45°=75°,∠ADC=∠B+∠BAD=75°,
∴∠ADC=∠CAD,
∴AC=CD,
即△ACD为等腰三角形;

(2)解:有两种情况:①当∠ADC=90°时,
∵∠B=30°,
∴∠BAD=∠ADC-∠B=90°-30°=60°;
②当∠CAD=90°时,∠BAD=∠BAC-∠CAD=120°-90°=30°;
即∠BAD的度数是60°或30°.

点评 本题考查了三角形内角和定理,等腰三角形的判定的应用,能根据定理求出各个角的度数是解此题的关键,用了分类讨论思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网