题目内容

20.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式(  )
A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2
C.a2-b2=(a+b)(a-b)D.(a+b)(a-2b)=a2-ab-2b2

分析 第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2-b2;第二个图形阴影部分是一个长是(a+b),宽是(a-b)的长方形,面积是(a+b)(a-b);这两个图形的阴影部分的面积相等.

解答 解:∵图甲中阴影部分的面积=a2-b2,图乙中阴影部分的面积=(a+b)(a-b),
而两个图形中阴影部分的面积相等,
∴阴影部分的面积=a2-b2=(a+b)(a-b).
故选:C.

点评 此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网