题目内容

16.如图,已知四边形ABCD的四边相等,等边△AMN的顶点M、N分别在BC、CD上,且AM=AB,则∠C为(  )
A.100°B.105°C.110°D.120°

分析 由四边形ABCD的四边都相等,可证得四边形ABCD是菱形,又由等边△AMN的顶点M、N分别在BC、CD上,且AM=AB,可设∠BAE=∠FAD=x,根据三角形的内角和定理得出方程x+2(180°-60°-2x)=180°,解此方程的解即可求出答案.

解答 解:∵四边形ABCD的四边都相等,
∴四边形ABCD是菱形,
∴∠B=∠D,∠DAB=∠C,AD∥BC,
∴∠DAB+∠B=180°,
∵△AMN是等边三角形,AM=AB,
∴∠AMN=∠ANM=60°,AM=AD,
∴∠B=∠AMB,∠D=∠AND,
由三角形的内角和定理得:∠BAM=∠NAD,
设∠BAM=∠NAD=x,
则∠D=∠AND=180°-60°-2x,
∵∠NAD+∠D+∠AND=180°,
∴x+2(180°-60°-2x)=180°,
解得:x=20°,
∴∠C=∠BAD=2×20°+60°=100°.
故选A.

点评 本题主要考查对菱形的判定和性质,等边三角形的性质,等腰三角形的性质,三角形的内角和定理以及平行线的性质等知识点.注意掌握方程思想的应用是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网