题目内容

19.如图,某校少年宫数学课外活动初三小组的同学为测量一座铁塔AM的高度如图,他们在坡度是i=1:2.5的斜坡DE的D处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM.亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程.(数据$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73供选用,结果保留整数)

分析 先根据DE的坡度i=1:2.5求出FD与EF的长,进而可得出GD的长,在Rt△DBG中,由等腰直角三角形的性质得出BG=GD,在Rt△DAN中,根据∠NAD=60°,ND=NG+GD=CH+GD可得出AN的长,再由AM=AN-MN=AN-BG可得出结论.

解答 解:∵斜坡的坡度是i=$\frac{EF}{FD}$═$\frac{1}{2.5}$,EF=2,
∴FD=2.5   EF=2.5×2=5,
∵CE=13,CE=GF,
∴GD=GF+FD=CE+FD=13+5=18.
在Rt△DBG中,
∵∠GDB=45°,
∴BG=GD=18,
在Rt△DAN中,
∵∠NAD=60°,ND=NG+GD=CH+GD=2+18=20,
∴AN=ND•tan60°=20×$\sqrt{3}$=20$\sqrt{3}$,
∴AM=AN-MN=AN-BG=20$\sqrt{3}$-18≈17(米).
答:铁塔高AC约17米.

点评 本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网