题目内容

3.观察下列等式:
第1个等式:a1=$\frac{1}{1×3}$=$\frac{1}{2}$(1-$\frac{1}{3}$)
第2个等式:a2=$\frac{1}{3×5}$=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$)
第3个等式:a3=$\frac{1}{5×7}$=$\frac{1}{2}$($\frac{1}{5}$-$\frac{1}{7}$)
第4个等式:a4=$\frac{1}{7×9}$=$\frac{1}{2}$($\frac{1}{7}$-$\frac{1}{9}$)

请回答下列问题:
(1)按上述等式的规律,列出第5个等式:a5=$\frac{1}{9×11}$=$\frac{1}{2}$×($\frac{1}{9}$-$\frac{1}{11}$)
(2)用含n的式子表示第n个等式:an=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
(3)求a1+ a2+a3+a4+…+a100的值.

分析 (1)观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.
(2)运用(1)中变化规律计算得出即可.
(3)运用以上规律裂项求和即可.

解答 解:(1)观察下列等式:
第1个等式:a1=$\frac{1}{1×3}$=$\frac{1}{2}$(1-$\frac{1}{3}$)
第2个等式:a2=$\frac{1}{3×5}$=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$)
第3个等式:a3=$\frac{1}{5×7}$=$\frac{1}{2}$($\frac{1}{5}$-$\frac{1}{7}$)
第4个等式:a4=$\frac{1}{7×9}$=$\frac{1}{2}$($\frac{1}{7}$-$\frac{1}{9}$)

则第5个等式:a5=$\frac{1}{9×11}$=$\frac{1}{2}$×($\frac{1}{9}$-$\frac{1}{11}$);
故答案为$\frac{1}{9×11}$,$\frac{1}{2}$×($\frac{1}{9}$-$\frac{1}{11}$);

(2)由(1)知,an=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
故答案为:$\frac{1}{(2n-1)(2n+1)}$,$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$);

(3)原式=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{99×101}$
=$\frac{1}{2}$(1-$\frac{1}{3}$)+$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$)+$\frac{1}{2}$($\frac{1}{5}$-$\frac{1}{7}$)+…+$\frac{1}{2}$($\frac{1}{99}$-$\frac{1}{101}$)
=$\frac{1}{2}$×(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{99}$-$\frac{1}{101}$)
=$\frac{1}{2}$×$\frac{100}{101}$
=$\frac{50}{101}$.

点评 此题考查了数字的规律及运用规律计算.寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网