题目内容

20.如图,一只猫头鹰蹲在树AC上的B处,通过墙顶F发现一只老鼠在E处,刚想起飞捕捉时,老鼠突然跑到矮墙DF的阴影下,猫头鹰立即从B处向上飞至树上C处时,恰巧可以通过墙顶F看到老鼠躲在M处(A、D、M、E四点在同一条直线上).
已知,猫头鹰从B点观测E点的俯角为37°,从C点观察M点的俯角为53°,且DF=3米,AB=6米.求猫头鹰从B处飞高了多少米时,又发现了这只老鼠?(结果精确到0.01米)(参考数据:sin37°=cos53°=0.602,cos37°=sin53°=0.799,tan37°=cot53°=0.754,cot37°=tan53°=1.327).

分析 根据猫头鹰从B点观测E点的俯角为37°,可知∠E=37°,在△DEF中,已知DF的长度即可求得DE的长度,然后证得D是AE的中点,从而求得AE的长度,根据猫头鹰从C点观察M点的俯角为53°,可知∠AMC=53°,进而求得DM,即可求得AM,在△AMC中,根据余切函数求得AC,即可求得BC.

解答 解∵DF=3,∠E=37°,cot37°=$\frac{DE}{DF}$,
∴DE=3•cot37°,
∵DF=3米,AB=6米,AC∥DF,
∴D是AE的中点,
∴AE=2DE=6•cot37°,
∵cot53°=$\frac{DM}{DF}$,
∴DM=3•cot53°,
∴AM=AD+DM=3(cot37°+cot53°),
∵cot37°=$\frac{AC}{AM}$,
∴AC=AM•cot37°,
∴BC=AC-6≈2.28(米).

点评 本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形并解直角三角形,利用三角函数求解相关线段,难度一般.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网