题目内容

13.如图,△ABC中,AB=AC=26,BC=20,AD是BC边上的中线,AD=24,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为$\frac{240}{13}$.

分析 作BE⊥AC垂足为E,交AD于F,此时CF+EF最小.

解答 解:作BE⊥AC垂足为E,交AD于F,此时CF+EF最小.
理由如下:∵AB=AC,AD是中线,
∴AD⊥BC,
∴FB=FC,
∴CF+EF=BF+EF,
∵线段BE是垂线段,根据垂线段最短,
∴点E、点F、就是所找的点.
∵$\frac{1}{2}$•BC•AD=$\frac{1}{2}$•AC•BE,
∴$\frac{1}{2}$×20×24=$\frac{1}{2}$×26×BE,
∴BE=$\frac{240}{13}$,
∴CF+EF的最小值=BE=$\frac{240}{13}$,
故答案为$\frac{240}{13}$.

点评 本题考查等腰三角形的性质、垂直平分线的性质、垂线段最短等知识,掌握应用面积法求高是解决这个问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网