ÌâÄ¿ÄÚÈÝ
14£®Óù«Ê½·¨½â·½³Ì$\frac{1}{2}$x2+$\frac{1}{2}$x+$\frac{1}{8}$=0£®½â£º4x2+4x+1=0£¬¢Ù
¡ßa=4£¬b=4£¬c=1£¬¢Ú
¡àb2-4ac=42-4¡Á4¡Á1=0£®¢Û
¡àx=$\frac{-4¡À\sqrt{0}}{2¡Á4}$=-$\frac{1}{2}$£®¢Ü
¡àx1=x2=-$\frac{1}{2}$
£¨1£©Ö¸³öÿһ²½µÄ½âÌâ¸ù¾Ý£º¢Ù°Ñ·½³Ì»¯ÎªÒ»°ãʽ£¬¢ÚÈ·¶¨a£¬b£¬cµÄÖµ£¬¢Û¼ÆËã³ö¡÷=b2-4ac£¬¢Ü´úÈëÇó¸ù¹«Ê½£®
£¨2£©ÌåÑéÒÔÉϽâÌâ¹ý³Ì£¬Óù«Ê½·¨½â·½³Ì£º
$\frac{1}{3}$x2+$\frac{1}{3}$x-$\frac{1}{6}$=0£®
·ÖÎö £¨1£©Çó¸ù¹«Ê½Çó½âʱ£¬ÏÈÒª°Ñ·½³Ì»¯ÎªÒ»°ãʽ£¬È·¶¨a£¬b£¬cµÄÖµ£¬¼ÆËã³ö¡÷=b2-4ac£¬È»ºó´úÈ빫ʽ£®
£¨2£©°Ñ·½³Ì»¯ÎªÒ»°ãʽ£¬È·¶¨a£¬b£¬cµÄÖµ£¬¼ÆËã³ö¡÷=b2-4ac£¬È»ºó´úÈëÇó¸ù¹«Ê½¼´¿É£®
½â´ð ½â£º£¨1£©¹«Ê½·¨Çó½âʱ£¬ÏÈÒª°Ñ·½³Ì»¯ÎªÒ»°ãʽ£¬È·¶¨a£¬b£¬cµÄÖµ£¬¼ÆËã³ö¡÷=b2-4ac£¬È»ºó´úÈ빫ʽ£®
¹ÊÒÔÉϽâÌâµÄ¸ù¾ÝΪ£º£º¢Ù°Ñ·½³Ì»¯ÎªÒ»°ãʽ£¬¢ÚÈ·¶¨a£¬b£¬cµÄÖµ£¬¢Û¼ÆËã³ö¡÷=b2-4ac£¬¢Ü´úÈëÇó¸ù¹«Ê½£®
¹Ê´ð°¸Îª£º°Ñ·½³Ì»¯ÎªÒ»°ãʽ£¬È·¶¨a£¬b£¬cµÄÖµ£¬¼ÆËã³ö¡÷=b2-4ac£¬´úÈëÇó¸ù¹«Ê½£®
£¨2£©$\frac{1}{3}$x2+$\frac{1}{3}$x-$\frac{1}{6}$=0£¬
½â£»2x2+2x-1=0
¡ßa=2£¬b=2£¬c=-1£¬
¡àb2-4ac=22-4¡Á2¡Á£¨-1£©=12£®
¡àx=$\frac{-2¡À\sqrt{12}}{2¡Á2}$=$\frac{-1¡À\sqrt{3}}{2}$£®
¡àx1=$\frac{-1+\sqrt{3}}{2}$£¬x2=$\frac{-1-\sqrt{3}}{2}$£®
µãÆÀ ±¾Ì⿼²éÁËÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£¬a£¬b£¬cΪ³£Êý£©µÄ½â·¨£®¿ÉÒÔÖ±½ÓÀûÓÃËüµÄÇó¸ù¹«Ê½Çó½â£¬ËüµÄÇó¸ù¹«Ê½Îª£ºx=$\frac{-b¡À\sqrt{{b}^{2}-4ac}}{2a}$£¨b2-4ac¡Ý0£©£»ÓÃÇó¸ù¹«Ê½Çó½âʱ£¬ÏÈÒª°Ñ·½³Ì»¯ÎªÒ»°ãʽ£¬È·¶¨a£¬b£¬cµÄÖµ£¬¼ÆËã³ö¡÷=b2-4ac£¬È»ºó´úÈ빫ʽ£®
| A£® | $\frac{1}{b}$$\sqrt{ab}$ | B£® | -$\frac{1}{b}$$\sqrt{ab}$ | C£® | -$\frac{1}{b}$$\sqrt{-ab}$ | D£® | b$\sqrt{ab}$ |
| A£® | y=$\frac{2}{x}$ | B£® | y=-3x+2 | C£® | y=-3x2+2 | D£® | y=3x-22 |