题目内容

设抛物线y=ax2+bx+c(a≠0)过点A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为______.

y=x2-x+2或y=-x2+x+2. 【解析】试题分析:∵抛物线过A(0,2),∴. ∵抛物线过B(4,3),∴. ∵抛物线过C,且点C在直线上,点C到抛物线对称轴的距离等于1, ∴. ∴或,解得或. ∴抛物线的函数解析式为或.
练习册系列答案
相关题目

如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].

(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.

(2)探究下列问题:

①若一个函数的特征数为[2,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.

②若一个函数的特征数为[4,2],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[2,4]?

(1)此函数图象的顶点坐标为:(1,0);(2)图象对应的函数的特征数为:[0,﹣1];(3)原函数的图象向右平移1个单位,再向上平移5个单位得到. 【解析】试题分析:(1)根据特征数的定义,得二次函数为y=x2﹣2x+1,再利用配方得:y=(x﹣1)2,从而顶点坐标为(1,0) (2)①根据特征数的定义,得二次函数为y=x2+2x-1,再利用配方得y=(x+1)2﹣2,图象先向右平移...

已知抛物线y=ax2+bx+c开口向下,顶点坐标(3,-5),那么该抛物线有( )

A. 最小值-5

B. 最大值-5

C. 最小值3

D. 最大值3

B 【解析】由抛物线的开口向下和其顶点坐标为(3,-5),根据抛物线的性质,可以知该抛物线有最大值-5. 故选:B.

抛物线的顶点坐标是(  )

A. (-1,2) B. (-1,-2) C. (1,2) D. (1,-2)

C 【解析】利用抛物线顶点式的特点直接写出顶点坐标是(h,k),可知抛物线y=(x-1)2+2的顶点坐标是(1,2). 故选:C.

若y=ax2+bx+c,则由表格中信息可知y与x之间的函数表达式是( )

x

-1

0

1

ax2

1

ax2+bx+c

8

3

A. y=x2-4x+3 B. y=x2-3x+4

C. y=x2-3x+3 D. y=x2-4x+8

A 【解析】把表格中所给的的三对对应值代入对应的式子可得: ,解得: , ∴与之间的函数表达式为:. 故选A.

已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.

y=5(x﹣1)2﹣2 【解析】试题分析:因为已知顶点坐标,所以可设抛物线顶点式: ,仅有一待定系数a,故只需找出图象上一个已知点,代入即可得到一个关于a的一元一次方程,解之,得a值,即可得到所求解析式. 【解析】 ∵抛物线的顶点坐标为M(1,﹣2), ∴设此二次函数的解析式为y=a(x﹣1)2﹣2, 把点(2,3)代入解析式,得: , 解得 a =5, ...

若所求的二次函数图象与抛物线有相同的顶点,并且在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,则所求二次函数的解析式为(  )

A.

B.

C.

D.

D 【解析】抛物线y=2x2-4x-1的顶点坐标为(1,-3),根据题意得所求的二次函数的解析式的顶点坐标是(1,-3),且抛物线开口向下. A.抛物线开口向下,顶点坐标是(1,5),所以选项错误; B.抛物线开口向下,顶点坐标是(1,-3a-3),所以选项错误; C.抛物线开口向下,顶点坐标是(-1,-3),所以选项错误; D.抛物线开口向下,顶点坐标是(1,-3)...

已知抛物线过A(-1,0),B(3,0)两点,与y轴交于C点,且BC=3,则这条抛物线的解析式为 ( )

A. y=-x2+2x+3 B. y=x2-2x-3

C. y=x2+2x―3或y=-x2+2x+3 D. y=-x2+2x+3或y=x2-2x-3

D 【解析】∵A、B两点的纵坐标为0. ∴A、B为抛物线与x轴的交点, ∴△OBC为直角三角形。 又∵C点有可能在y轴的负半轴,也可能在y轴的正半轴。 ∴C点的纵坐标为3或?3(根据勾股定理求得). ∴C点的纵坐标为(0,3)或(0,?3). 设函数的解析式为y=ax²+bx+c, (1)则当抛物线经过(?1,0)、(3,0)、(0,?3)三点时, ...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网