题目内容
13.(1)甲同学的画法是:
①延长BC和AC;
②在BC的延长线上取点D,使CD=BC;
③在AC的延长线上取点E,使CE=AC;
④连结DE,得△DEC.
(2)乙同学的画法是:
①延长AC和BC;
②在BC的延长线上取点M,使CM=AC;
③在AC的延长线上取点N,使CN=BC;
④连结MN,得△MNC.
究竟哪种画法对,有如下几种可能:
①甲画得对,乙画得不对;②甲画的不对,乙画得对;③甲、乙都画得对;④甲、乙都画得不对;正确的结论是③.(请填序号)
(3)这道题还可这样完成:
①用量角器量出∠ACB的度数;
②在∠ACB的外部画射线CP,使∠ACP=∠ACB;
③在射线CP上取点D,使CD=CB;
④连结AD,△ADC就是所要画的三角形.
这样画的结果可记作△ABC≌△ADC.
(4)满足题目要求的三角形可以画出多少个呢?答案是无数个.
(5)请你再设计一种画法,在图中画出图形,简要说明画法不必说明理由.
分析 (1)、(2)利用“SAS”可甲乙的画法进行判断;
(3)根据“SAS”可判断△ABC≌△ADC;
(4)以BC为公共边画三角形与△ABC全等.
解答 解:(1)、(2)对于甲的画法,可根据“SAS”判定△ACB≌△ECD;对于乙的画法,可根据“SAS”判定△ACB≌△MCN,所以甲、乙都画得对;
(3)根据“SAS”可判断△ABC≌△ADC;
(4)满足题目要求的三角形可以画出无数个;
(5)如图,过C点作CE∥AB,截取CE=AB,连结BE,则△BCE为所作.![]()
故答案为③,△ADC,无数.
点评 本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定.
练习册系列答案
相关题目
3.一元二次方程5x2-2x=0,最适当的解法是( )
| A. | 直接开平方法 | B. | 配方法 | C. | 公式法 | D. | 因式分解法 |