题目内容

20.星期天早晨茗茗陪爷爷出门散步,他们所走的路线组成一个等边三角形,如图所示,下列可以正确表示他们离家的距离s与时间t的函数图象的是(  )
A.B.C.D.

分析 分析图象可知:该图象是路程与时间的关系,先离家逐渐变远,到达三角形的第一个顶点,离家最远;然后走到第二条边的中点时距离越来越小,后又越来越大,到达第二个顶点有达到最大;走到第三条边上时,离家距离在逐渐变近,最后变为0;由此选择图象得出答案即可.

解答 解:由题意可知:先离家逐渐变远,到达三角形的第二个顶点,离家最远;然后走到第二条边的中点时距离越来越小,后又越来越大,到达第三个顶点有达到最大;走到第三条边上时,离家距离在逐渐变近,最后变为0;符合题意的图象是C.
故选:C.

点评 此题考查了动点函数的图象,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.

练习册系列答案
相关题目
15.我们借助学习“三角形全等的判定”获得的经验与方法,对“全等四边形的判定”进行探究.
规定:
(1)四条边对应相等,四个角对应相等的两个四边形全等.
(2)在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件.
【初步思考】
满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.
【深入探究】
小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型:
Ⅰ一条边和四个角对应相等;
Ⅱ二条边和三个角对应相等;
Ⅲ三条边和二个角对应相等;
Ⅳ四条边和一个角对应相等.
(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.
(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明.
已知:如图,四边形ABCD和四边形A1B1C1D1中,AB=A1B1,BC=B1C1,CD=C1D1,DA=D1A1,∠B=∠B1
求证:四边形ABCD≌四边形A1B1C1D1
证明:

(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形ABCD和四边形A1B1C1D1为例,分为以下几类:
①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1
②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1
③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1
④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1
其中能判定四边形ABCD和四边形A1B1C1D1全等的是①②③(填序号),概括可得一个“全等四边形的判定方法”,这个判定方法是有一组邻边和三个角对应相等的两个四边形全等.
(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个不同于(3)中所示的全等四边形的判定方法.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网