题目内容

【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为
 

考点:菱形的性质,全等三角形的判定与性质,正方形的性质
专题:
分析:拓展:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=2ED,可求得△CDE的面积,继而求得答案.
解答:解:拓展:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,
BC=CD
∠BCE=∠DCG
CE=CG

∴△BCE≌△DCG(SAS),
∴BE=DG.(6分)

应用:∵四边形ABCD为菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=2ED,
∴S△CDE=
1
3
×8=
8
3

∴S△ECG=S△CDE+S△CDG=
32
3

∴S菱形CEFG=2S△ECG=
64
3

故答案为:
64
3
.(9分)
点评:此题考查了菱形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网