题目内容
20.| A. | 2$\sqrt{3}$ | B. | 2$\sqrt{5}$ | C. | 2$\sqrt{3}$+1 | D. | 6 |
分析 点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.
解答
解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,
连接CD,∵△ABC是等边三角形,AB是直径,
∴EF⊥BC,
∴F是BC的中点,
∵E为BD的中点,
∴EF为△BCD的中位线,
∴CD∥EF,
∴CD⊥BC,
BC=4,CD=2,
故BD=$\sqrt{B{C}^{2}+C{D}^{2}}$=$\sqrt{16+4}$=2$\sqrt{5}$,
故选B.
点评 本题主要考查了等边三角形的性质,圆周角定理,三角形中位线的性质,勾股定理,正确的作出辅助圆是解题的关键.
练习册系列答案
相关题目
17.已知反比例函数y=$\frac{5}{x}$,当1<x≤4时,y的最大整数值是( )
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |