题目内容

8.如图,AB是⊙O的直径,AC,BC分别与⊙O相交于点D,E,连接DE,现给出两个命题:
①若AC=AB,则DE=CE;
②若∠C=45°,记△CDE的面积为S1,四边形DABE的面积为S2,则S1=S2
那么(  )
A.①是真命题  ②是假命题B.①是假命题  ②是真命题
C.①是假命题 ②是假命题D.①是真命题 ②是真命题

分析 根据等腰三角形的性质得到∠C=∠B,根据圆内接四边形的性质得到∠B=∠CDE,根据等腰三角形的判定判断①;
根据相似三角形的面积比等于相似比的平方判断②.

解答 解:∵AC=AB,
∴∠C=∠B,
∵四边形ABED内接于⊙O,
∴∠B=∠CDE,
∴∠C=∠CDE,
∴DE=CE;①正确;
连接AE,
∵AB是⊙O的直径,
∴∠AEC=90°,又∠C=45°,
∴AC=$\sqrt{2}$CE,
∵四边形ABED内接于⊙O,
∴∠B=∠CDE,∠CAB=∠CED,
∴△CDE∽△CBA,
∴$\frac{{S}_{△CDE}}{{S}_{△CBA}}$=($\frac{CE}{CA}$)2=$\frac{1}{2}$,
∴S1=S2,②正确,
故选:D.

点评 本题考查的是命题的真假判断,掌握圆内接四边形的性质、等腰三角形的性质、相似三角形的判定和性质定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网