题目内容

3.已知$\frac{a}{b}$=$\frac{c}{d}$=$\frac{1}{2}$,则下列式子中正确的是(  )
A.$\frac{a}{b}$=$\frac{{c}^{2}}{{d}^{2}}$B.$\frac{a}{d}$=$\frac{c}{b}$C.$\frac{a+c+1}{b+d+2}$=$\frac{1}{2}$D.$\frac{a+c}{b+d+2}$=$\frac{1}{2}$

分析 利用等式的性质对A进行判断;直接由已知条件对B进行判断;根据等比性质对C、D进行判断.

解答 解:A、因为$\frac{a}{b}$=$\frac{c}{d}$=$\frac{1}{2}$,则$\frac{{c}^{2}}{{d}^{2}}$=$\frac{1}{4}$,所以A选项错误;
B、$\frac{a}{b}$=$\frac{c}{d}$=$\frac{1}{2}$,所以B选项错误;
C、因为$\frac{a}{b}$=$\frac{c}{d}$=$\frac{1}{2}$,则$\frac{a+c+1}{b+d+2}$=$\frac{1}{2}$,所以C选项正确;
D、因为$\frac{a}{b}$=$\frac{c}{d}$=$\frac{1}{2}$,则$\frac{a+c+1}{b+d+2}$=$\frac{1}{2}$,所以D选项错误.
故选C.

点评 本题考查了比例的性质:常用的性质有:内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网