题目内容
1.解方程:(1)9-3x=7+5x;
(2)$\frac{x-0.3}{0.4}$-$\frac{x+0.4}{0.2}$=1.
分析 (1)方程移项合并,把x系数化为1,即可求出解;
(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.
解答 解:(1)移项合并得:8x=2,
解得:x=0.25;
(2)方程整理得:$\frac{10x-3}{4}$-$\frac{10x+4}{2}$=1,
去分母得:10x-3-20x-8=4,
移项合并得:-10x=15,
解得:x=-1.5.
点评 此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
11.若关于x的方程x+$\frac{2}{x}$=c+$\frac{2}{c}$的根为x1=c,x2=$\frac{2}{c}$,则关于x的方程x+$\frac{2}{x-1}$=a+$\frac{2}{a-1}$的根是( )
| A. | x1=a,x2=$\frac{2}{a-1}$ | B. | x1=a-1,x2=$\frac{2}{a-1}$ | C. | x1=a,x2=$\frac{a+1}{a-1}$ | D. | x1=a,x2=$\frac{a}{a-1}$ |
12.
某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了m名学生的得分进行统计
请你根据不完整的表格,回答下列问题:
(1)请直接写出m,a,b,c的值;
(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?
| 成绩x(分) | 频数 | 频率 |
| 50≤x<60 | 10 | a |
| 60≤x<70 | 16 | 0.08 |
| 70≤x<80 | b | 0.02 |
| 80≤x<90 | 62 | c |
| 90≤x<100 | 72 | 0.36 |
(1)请直接写出m,a,b,c的值;
(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?
9.无论x取何值,下列不等式总是成立的是( )
| A. | x+5>0 | B. | x+5<0 | C. | -(x+5)2<0 | D. | (x+5)2≥0 |