题目内容

2.已知正方形ABCD的边长为4,E为AB的中点,F为AD上一点,且AF=$\frac{1}{4}$AD,试判断△EFC的形状.

分析 因为正方形ABCD的边长为4,易得AF=1,则FD=3,DC=BC=4,AE=EB=2;在Rt△AEF、Rt△DFC,Rt△EBC中,利用勾股定理求出EF、EC、FC的长,再根据勾股定理的逆定理解答.

解答 解:△EFC为直角三角形.
∵正方形ABCD的边长为4,
∴AF=1,FD=3,DC=BC=4,AE=EB=2;
在Rt△AEF中,EF=$\sqrt{{AF}^{2}{+AE}^{2}}$=$\sqrt{5}$;
在Rt△DFC中,FC=$\sqrt{{FD}^{2}{+CD}^{2}}$=5;
在Rt△EBC中,EC=$\sqrt{{EB}^{2}{+BC}^{2}}$=2$\sqrt{5}$.
∴EC2+EF2=FC2
∴△EFC是直角三角形.

点评 本题考查了勾股定理和勾股定理的逆定理及正方形的性质,利用勾股定理求出三角形三边长,再利用勾股定理逆定理解答是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网