ÌâÄ¿ÄÚÈÝ
15£®£¨1£©Óú¬ÓÐtµÄ´úÊýʽ±íʾAMµÄ³¤Îªt+1
£¨2£©µ±t=$\frac{19}{2}$Ãëʱ£¬AM+BN=11£®
£¨3£©ÈôµãA¡¢BÓëÏß¶ÎMNÍ¬Ê±ÒÆ¶¯£¬µãAÒÔÿÃë2¸öµ¥Î»ËÙ¶ÈÏòÊýÖáµÄÕý·½ÏòÒÆ¶¯£¬µãBÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÏòÊýÖáµÄ¸º·½ÏòÒÆ¶¯£¬ÔÚÒÆ¶¯¹ý³Ì£¬AMºÍBN¿ÉÄÜÏàµÈÂð£¿ÈôÏàµÈ£¬ÇëÇó³ötµÄÖµ£¬Èô²»ÏàµÈ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾ÝµãM¿ªÊ¼±íʾµÄÊý½áºÏÆäÔ˶¯ËٶȺÍʱ¼ä£¬¼´¿ÉµÃ³öÔ˶¯ºóµãMµÄ±íʾµÄÊý£¬ÔÙÒÀ¾ÝµãA±íʾµÄÊýΪ-1¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©·Ö±ðÕÒ³öAM¡¢BN£¬¸ù¾ÝAM+BN=11¼´¿ÉÁгö¹ØÓÚtµÄº¬¾ø¶ÔÖµ·ûºÅµÄÒ»ÔªÒ»´Î·½³Ì£¬½â·½³Ì¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©¼ÙÉèÄܹ»ÏàµÈ£¬ÕÒ³öAM¡¢BN£¬¸ù¾ÝAM=BN¼´¿ÉÁгö¹ØÓÚtµÄº¬¾ø¶ÔÖµ·ûºÅµÄÒ»ÔªÒ»´Î·½³Ì£¬½â·½³Ì¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©¡ßµãA¡¢M¡¢N¶ÔÓ¦µÄÊý×Ö·Ö±ðΪ-1¡¢0¡¢2£¬Ïß¶ÎMNÑØÊýÖáµÄÕý·½ÏòÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÒÆ¶¯£¬Òƶ¯Ê±¼äΪtÃ룬
¡àÒÆ¶¯ºóM±íʾµÄÊýΪt£¬N±íʾµÄÊýΪt+2£¬
¡àAM=t-£¨-1£©=t+1£®
¹Ê´ð°¸Îª£ºt+1£®
£¨2£©ÓÉ£¨1£©¿ÉÖª£ºBN=|11-£¨t+2£©|=|9-t|£¬
¡ßAM+BN=11£¬
¡àt+1+|9-t|=11£¬
½âµÃ£ºt=$\frac{19}{2}$£®
¹Ê´ð°¸Îª£º$\frac{19}{2}$£®
£¨3£©¼ÙÉèÄÜÏàµÈ£¬ÔòµãA±íʾµÄÊýΪ2t-1£¬M±íʾµÄÊýΪt£¬N±íʾµÄÊýΪt+2£¬B±íʾµÄÊýΪ11-t£¬
¡àAM=|2t-1-t|=|t-1|£¬BN=|t+2-£¨11-t£©|=|2t-9|£¬
¡ßAM=BN£¬
¡à|t-1|=|2t-9|£¬
½âµÃ£ºt1=$\frac{10}{3}$£¬t2=8£®
¹ÊÔÚÔ˶¯µÄ¹ý³ÌÖÐAMºÍBNÄÜÏàµÈ£¬´ËʱÔ˶¯µÄʱ¼äΪ$\frac{10}{3}$ÃëºÍ8Ã룮
µãÆÀ ±¾Ì⿼²éÁËÊýÖáÒÔ¼°Ò»ÔªÒ»´Î·½³ÌµÄÓ¦Ó㬸ù¾ÝÊýÁ¿¹ØÏµÁгöÒ»ÔªÒ»´Î·½³ÌÊǽâÌâµÄ¹Ø¼ü£®
| A£® | y=£¨x-3£©2-1 | B£® | y=£¨x+1£©2+5 | C£® | y=£¨x+1£©2-1 | D£® | y=£¨x-3£©2+5 |
| A£® | 18 | B£® | 16 | C£® | 12 | D£® | 10 |