题目内容
(1)如果∠BAO=45°,直接写出点P的坐标;
(2)求证:点P在∠AOB的平分线上;
(3)设点P到x轴的距离为h,直接写出h的取值范围.
考点:正方形的性质,坐标与图形性质,全等三角形的判定与性质,角平分线的性质,解直角三角形的应用
专题:综合题
分析:(1)当∠BAO=45°时,因为四边形ABCD是正方形,P是AC,BD对角线的交点,能证明OAPB是正方形,从而求出P点的坐标.
(2)过P点作x轴和y轴的垂线,可通过三角形全等,证明是角平分线.
(3)因为点P在∠AOB的平分线上,所以h>0.
(2)过P点作x轴和y轴的垂线,可通过三角形全等,证明是角平分线.
(3)因为点P在∠AOB的平分线上,所以h>0.
解答:(1)解:∵∠BPA=90°,PA=PB,
∴∠PAB=45°,
∵∠BAO=45°,
∴∠PAO=90°,
∴四边形OAPB是正方形,
∵AB=2,由勾股定理得:PA=PB=
∴P点的坐标为:(
,
).
(2)证明:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,
∵∠BPE+∠EPA=90°,∠EPB+∠FPB=90°,
∴∠FPB=∠EPA,
在△PBF和△PAE中,
,
∴△PBF≌△PAE(AAS),
∴PE=PF,
∴点P在∠AOB的平分线上.
(3)解:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,则PE=h,设∠APE=α.
在直角△APE中,∠AEP=90°,PA=
,
∴PE=PA•cosα=
•cosα,
又∵顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),
∴0°≤α<45°,
∴1<h≤
.
∴∠PAB=45°,
∵∠BAO=45°,
∴∠PAO=90°,
∴四边形OAPB是正方形,
∵AB=2,由勾股定理得:PA=PB=
| 2 |
∴P点的坐标为:(
| 2 |
| 2 |
(2)证明:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,
∵∠BPE+∠EPA=90°,∠EPB+∠FPB=90°,
∴∠FPB=∠EPA,
在△PBF和△PAE中,
|
∴△PBF≌△PAE(AAS),
∴PE=PF,
∴点P在∠AOB的平分线上.
(3)解:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,则PE=h,设∠APE=α.
在直角△APE中,∠AEP=90°,PA=
| 2 |
∴PE=PA•cosα=
| 2 |
又∵顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),
∴0°≤α<45°,
∴1<h≤
| 2 |
点评:本题考查了正方形的性质(四边相等,四角相等,对角线互相垂直平分,且平分每一组对角)以及坐标与图形的性质,全等三角形的判定和性质,解直角三角形等知识点.
练习册系列答案
相关题目