题目内容

10.如图,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G,AG交BD于点F.
(1)试说明OE=OF;
(2)当AE=AB时,过点E作EH⊥BE交AD边于H,找出与△AHE全等的一个三角形加以证明,
(3)在(2)的条件下若该正方形边长为1,求AH的长.

分析 (1)根据正方形性质得出AC⊥BD,OA=OB,求出∠FAO=∠EBO,根据ASA推出△AFO≌△BEO即可;
(2)根据正方形性质得出∠ACB=∠DAC=45°,∠ABE+∠EBC=90°,求出∠CBE=∠AEH,AE=AB=BC,证△BCE≌△EAH;
(3)根据全等三角形的性质推出CE=AH,即可得出答案.

解答 (1)解:∵四边形ABCD是正方形,
∴AC⊥BD,OA=OB,
∴∠AOF=∠BOE=90°,
∵AG⊥BE,
∴∠FGB=90°,
∴∠OBE+∠BFG=90°,∠FAO+∠AFO=90°,
∵∠AFO=∠BFG,
∴∠FAO=∠EBO,
在△AFO和△BEO中,
$\left\{\begin{array}{l}{∠FAO=∠EBO}\\{OA=OB}\\{∠AOF=∠BOE}\end{array}\right.$,
∴△AFO≌△BEO(ASA),
∴OE=OF.


(2)△BCE≌△EAH,
证明:∵四边形ABCD是正方形,
∴∠ACB=∠DAC=45°,∠ABE+∠EBC=90°,
∵EH⊥BE,
∴∠AEH+∠AEB=90°,
∵AE=AB,
∴∠ABE=∠AEB,
∴∠CBE=∠AEH,
∵AE=AB=BC,
在△BCE和△EAH中,
$\left\{\begin{array}{l}{∠HAE=∠ECB}\\{AE=BC}\\{∠AEH=∠CBE}\end{array}\right.$,
∴△BCE≌△EAH(ASA);

(3)解:∵△BCE≌△EAH,
∴CE=AH,
∵AB=BC=1,
∴AC=$\sqrt{2}$,
∵AE=AB=1,
∴AH=CE=AC-AE=$\sqrt{2}$-1.

点评 本题考查了正方形性质,全等三角形的性质和判定,等腰三角形性质,三角形内角和定理的应用,主要考查学生综合运用性质和定理进行推理的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网