题目内容
2.解下列方程(1)x(x-2)+x-2=0
(2)2x2+2x-1=0.
分析 (1)因式分解法求解可得;
(2)公式法求解可得.
解答 解:(1)∵(x-2)(x+1)=0,
∴x-2=0或x+1=0,
解得:x=2或x=-1;
(2)∵a=2,b=2,c=-1,
∴△=4-4×2×(-1)=12>0,
则x=$\frac{-2±2\sqrt{3}}{4}$=$\frac{-1±\sqrt{3}}{2}$.
点评 本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
练习册系列答案
相关题目
11.
(1)如图,木棒AB位于点光源P和地面CD之间,AB∥CD,若光源P到木棒AB的距离是1米,木棒AB到底面的距离也为1米,测得木棒AB的长度为2米,求木棒AB在地面的影长CD;
(2)若木棒AB=2米,木棒AB始终保持与地面CD平行,且木棒AB到底面的距离也为1米,类.比(1)的探究方法,填写如表:
(3)平行于地面的线段长度一定,其上方的光源到该线段的距离一定,则当线段逐渐远离地面时,该线段在地面上的影长逐渐变大(填“变大”或“变小”).
(2)若木棒AB=2米,木棒AB始终保持与地面CD平行,且木棒AB到底面的距离也为1米,类.比(1)的探究方法,填写如表:
| 光源P到木棒AB的距离 | 木棒AB在地面的影长 |
| 1米 | 4 |
| 2米 | 3 |
| 3米 | $\frac{8}{3}$ |
| …. | |
| 结论:平行于地面的线段长度一定,到地面的距离一定,则其上方的光源逐渐远离线段时,该线段在地面上的影长逐渐变小(填“变大”或“变小”). | |