ÌâÄ¿ÄÚÈÝ
8£®ÎÒÏØ5ÔÂ18ÈÕ½øÐÐÁËͳһ¿¼ÊÔ£¬¡°ÌÚ·ÉС×顱ºÍ¡°Ï£ÍûС×顱µÄͬѧµÄ³É¼¨ÈçÏ£º£¨Ã¿×é10ÃûѧÉú£©£®
| ÌÚ·ÉС×é | 10 | 10 | 9 | 7 | 10 | 8 | 9 | 10 | 7 | 10 |
| Ï£ÍûС×é | 9 | 8 | 10 | 9 | 8 | 10 | 7 | 10 | 10 | 9 |
£¨2£©¼ÆËãÏ£ÍûС×éµÄƽ¾ù³É¼¨ºÍ·½³Ì£»
£¨3£©ÒÑ֪ѡÊÖСÃ÷ËùÔÚ²ÎÈü¶Ó³É¼¨µÄÖÐλÊý±ÈÁíÒ»¸ö²ÎÈü¶Ó³É¼¨µÄÖÐλÊýС£¬ÔòСÃ÷ËùÔÚµÄС×éÊÇÏ£ÍûС×飮
·ÖÎö £¨1£©¸ù¾ÝÖÐλÊýºÍÖÚÊýµÄ¶¨Òå½øÐÐÌî¿Õ£»
£¨2£©Çó³öÊý¾ÝÖ®ºÍ£¬½ø¶øÇó³öƽ¾ùÊý£»¸ù¾Ý·½²î¹«Ê½Çó³ö´ð°¸£»
£¨3£©Çó³ö¸÷¸öС×éµÄÖÐλÊý£¬½ø¶ø×÷³ö±È½Ï£®
½â´ð ½â£º£¨1£©ÌÚ·ÉС×é³É¼¨´ÓСµ½´óÅÅÁÐΪ7£¬7£¬8£¬9£¬9£¬10£¬10£¬10£¬10£¬10£¬ÔòÖÐλÊýÊÇ9.5£»
Ï£ÍûС×é³É¼¨´ÓСµ½´óÅÅÁÐΪ7£¬8£¬8£¬9£¬9£¬9£¬10£¬10£¬10£¬10£¬ÖÚÊýÊÇ10£¬ÖÐλÊýÊÇ9£¬
£¨2£©Ï£ÍûС×éµÄƽ¾ù³É¼¨Îª$\frac{1}{10}$¡Á£¨10¡Á4+9¡Á3+8¡Á2+7£©=9£¬
Ï£ÍûС×éµÄ·½²îÊÇ$\frac{1}{10}$¡Á[£¨10-9£©2¡Á4+£¨9-9£©2¡Á3+£¨8-9£©2¡Á2+£¨7-9£©2]=1£»
£¨3£©Ð¡Ã÷ËùÔÚµÄС×éÊÇÏ£ÍûС×飻
¹Ê´ð°¸Îª9.5£»9£»Ï£ÍûС×飮
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÖÚÊý£®Æ½¾ùÊýÒÔ¼°·½²îµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÕÆÎÕÖÚÊýµÄÒâÒåÒÔ¼°·½²î¹«Ê½£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®ÒÑÖªËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ¬ÏÂÁнáÂÛÖв»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | µ±¡ÏABC=90¡ãʱ£¬ËüÊǾØÐÎ | B£® | µ±AB=BCʱ£¬ËüÊÇÁâÐÎ | ||
| C£® | µ±AC¡ÍBDʱ£¬ËüÊÇÁâÐÎ | D£® | µ±AC=BDʱ£¬ËüÊÇÕý·½ÐÎ |