题目内容
6.正方体是由六个平面图形围成的立体图形,设想沿着正方体的一些棱将它剪开,就可以把正方体剪成一个平面图形,但同一个正方体,按不同的方式展开所得的平面展开图是不一样的;如图所示,请至少再画出三种不同的平面展开图.分析 根据平面图形的折叠及正方体的展开图的特点分别画出图形即可.
解答 解:根据题意画图如下:![]()
点评 此题考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意有田字的不能展开成正方体.
练习册系列答案
相关题目
14.两年前生产某药品的成本是5000元,现在生产这种药品的成本是3000元,设该药品成本的年平均下降率为x,则下面所列方程中正确的是( )
| A. | 5000(1-2x)=3000 | B. | 3000(1+2x)=5000 | C. | 3000(1+x)2=5000 | D. | 5000(1-x)2=3000 |
11.
如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:
(1)求抛物线表达式及A、B、C三点的坐标;
(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并求出面积的最大值及m的取值范围.
| x | … | -3 | -2 | 1 | 2 | … |
| y | … | $-\frac{5}{2}$ | -4 | $-\frac{5}{2}$ | 0 | … |
(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并求出面积的最大值及m的取值范围.