题目内容
计算下列各式,并且把结果化成只含有正整数指数幂的形式:
(1)(-
xy)-3÷(
x2y3)-2;
(2)(3m2n-2)2•(-4mn-3)-3;
(3)(
xy)-2÷(
x-2);
(4)(
)2•(
)÷(-
)-4.
(1)(-
| 3 |
| 2 |
| 5 |
| 2 |
(2)(3m2n-2)2•(-4mn-3)-3;
(3)(
| 2 |
| 3 |
| 1 |
| 3 |
(4)(
| c2 |
| a2b |
| b2c |
| a4 |
| b2 |
| ca2 |
考点:负整数指数幂
专题:
分析:根据运算顺序,先算乘方,再算乘除即可.
解答:解:(1)原式=(-
)-3x-3y-3÷(
)-2x-4y-6
=-
÷
xy3
=-
xy3;
(2)原式=9m4n-4•(-
m-3n9);
=-
mn5;
(3)原式=(-
)-2x-2y-2÷(
)-2x-2
=
÷9y-2
=
y-2
=
;
(4)原式=
•
•
=
.
| 3 |
| 2 |
| 5 |
| 2 |
=-
| 8 |
| 27 |
| 4 |
| 25 |
=-
| 50 |
| 27 |
(2)原式=9m4n-4•(-
| 1 |
| 64 |
=-
| 9 |
| 64 |
(3)原式=(-
| 2 |
| 3 |
| 1 |
| 3 |
=
| 9 |
| 4 |
=
| 1 |
| 4 |
=
| 1 |
| 4y2 |
(4)原式=
| c4 |
| a4b2 |
| b2c |
| a4 |
| a8c4 |
| b8 |
=
| c9 |
| b8 |
点评:本题考查了负整数指数幂的运算,是基础题比较简单.
练习册系列答案
相关题目