题目内容

17.已知一个正多边形的每个内角都等于120°,则这个正多边形是正六边形.

分析 设所求正多边形边数为n,根据内角与外角互为邻补角,可以求出外角的度数.根据任何多边形的外角和都是360度,由60°•n=360°,求解即可.

解答 解:设所求正多边形边数为n,
∵正n边形的每个内角都等于120°,
∴正n边形的每个外角都等于180°-120°=60°.
又因为多边形的外角和为360°,
即60°•n=360°,
∴n=6.
所以这个正多边形是正六边形.
故答案为:正六边形.

点评 本题考查了多边形内角和外角的知识,解答本题的关键在于熟练掌握任何多边形的外角和都是360°并根据外角和求出正多边形的边数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网