题目内容

18.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为3.

分析 作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.

解答 解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.
∴EP+FP=EP+F′P.
由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.
∵四边形ABCD为菱形,周长为12,
∴AB=BC=CD=DA=3,AB∥CD,
∵AF=2,AE=1,
∴DF=AE=1,
∴四边形AEF′D是平行四边形,
∴EF′=AD=3.
∴EP+FP的最小值为3.
故答案为:3.

点评 本题主要考查的是菱形的性质、轴对称--路径最短问题,明确当E、P、F′在一条直线上时EP+FP有最小值是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网