题目内容

7.若(a2+1)2-2(a2+1)-3=0,则a2等于2.

分析 设a2+1=t(t>0),则原方程转化为关于t的一元二次方程,通过解该方程得到t的值;然后再来求a2的值.

解答 解:设a2+1=t(t>0),则原方程转化为t2-2t-3=0,
整理,得
(t-3)(t+1)=0,
解得t=3或t=-1(舍去),
则a2+1=3,
所以a2=2.
故答案是:2.

点评 本题考查了换元法解一元二次方程.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.

练习册系列答案
相关题目
17.数学问题:计算$\frac{1}{m}$+$\frac{1}{{m}^{2}}$+$\frac{1}{{m}^{3}}$+…+$\frac{1}{{m}^{n}}$(其中m,n都是正整数,且m≥2,n≥1)
探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究. 
探究一:计算探究一:计算$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$.
第1次分割,把正方形的面积二等分,其中阴影部分的面积为$\frac{1}{2}$ 
第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为 $\frac{1}{2}$+$\frac{1}{{2}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续二等分,…; 

第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$最后空白部分的面积是 $\frac{1}{{2}^{n}}$.
探究二:计算$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$.
第1次分割,把正方形的面积三等分,其中阴影部分的面积为$\frac{2}{3}$;
第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为$\frac{2}{3}$+$\frac{2}{{3}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续三等分,…;

第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为$\frac{2}{3}$+$\frac{2}{{3}^{2}}$+$\frac{2}{{3}^{3}}$+…+$\frac{2}{{3}^{n}}$,最后空白部分的面积是$\frac{1}{{3}^{n}}$.
根据第n次分割图可得等式:$\frac{2}{3}$+$\frac{2}{{3}^{2}}$+$\frac{2}{{3}^{3}}$+…+$\frac{2}{{3}^{n}}$=1-$\frac{1}{{3}^{n}}$,
两边同除以2,得$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$=$\frac{1}{2}$-$\frac{1}{2×{3}^{n}}$.

探究三:计算$\frac{1}{4}$+$\frac{1}{{4}^{2}}$+$\frac{1}{{4}^{3}}$+…+$\frac{1}{{4}^{n}}$.
第1次分割,把正方形的面积四等分,其中阴影部分的面积为$\frac{3}{4}$;
第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为$\frac{3}{4}$+$\frac{3}{{4}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续四等分,…;

第n次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为$\frac{3}{4}$+$\frac{3}{{4}^{2}}$+$\frac{3}{{4}^{3}}$+…+$\frac{3}{{4}^{n}}$,最后空白部分的面积是$\frac{1}{{4}^{n}}$
根据第n次分割图可得等式:$\frac{3}{4}$+$\frac{3}{{4}^{2}}$+$\frac{3}{{4}^{3}}$+…+$\frac{3}{{4}^{n}}$=1-$\frac{1}{{4}^{n}}$.
两边同除以3,得$\frac{1}{4}$+$\frac{1}{{4}^{2}}$+$\frac{1}{{4}^{3}}$+…+$\frac{1}{{4}^{n}}$=$\frac{1}{3}$-$\frac{1}{3×{4}^{n}}$

探究四:计算$\frac{1}{5}$+$\frac{1}{{5}^{2}}$+$\frac{1}{{5}^{3}}$+…+$\frac{1}{{5}^{n}}$
(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:计算$\frac{1}{m}$+$\frac{1}{{m}^{2}}$+$\frac{1}{{m}^{3}}$+…+$\frac{1}{{m}^{n}}$.
(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)
根据第n次分割图可得等式:$\frac{m-1}{m}$+$\frac{m-1}{{m}^{2}}$+$\frac{m-1}{{m}^{3}}$+…+$\frac{m-1}{{m}^{n}}$=1-$\frac{1}{{m}^{n}}$,
所以,$\frac{1}{m}$+$\frac{1}{{m}^{2}}$+$\frac{1}{{m}^{3}}$+…+$\frac{1}{{m}^{n}}$=$\frac{1}{m-1}$-$\frac{1}{(m-1){m}^{n}}$.
拓广应用:计算$\frac{6-1}{6}$+$\frac{{6}^{2}-1}{{6}^{2}}$+$\frac{{6}^{3}-1}{{6}^{3}}$+…$\frac{{6}^{n}-1}{{6}^{n}}$.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网