题目内容
2.分析 根据两直线平行同位角相等,得出∠BAE=∠C=60°,然后根据三角形内角和定理即可求得∠E的度数.
解答 解:∵AB∥CD,∠C=60°,
∴∠BAE=∠C=60°,
∵∠ABE=42°,
∴∠E=180°-60°-42°=78°,
故答案为78°.
点评 本题考查了平行线的性质和三角形内角和定理,熟练掌握性质定理是解题的关键.
练习册系列答案
相关题目
4.a为任意实数,一次函数y=ax-2a+1的图象必过一定点,此顶点的坐标为( )
| A. | (0,1) | B. | (1,2) | C. | (2,1) | D. | (2,0) |
14.一个三角形的面积是$\frac{4}{5}$平方米,其中一条边是2米,这边上的高是( )
| A. | $\frac{8}{5}$米 | B. | $\frac{4}{5}$米 | C. | $\frac{2}{5}$米 | D. | 2米 |