题目内容
5.| A. | $2-\frac{1}{2^4}$ | B. | $\frac{1}{2^4}$ | C. | $1-\frac{1}{2^5}$ | D. | $\frac{1}{2^5}$ |
分析 根据中点的性质及折叠的性质可得DA=DA'=DB,从而可得∠ADA'=2∠B,结合折叠的性质,∠ADA'=2∠ADE,可得∠ADE=∠B,继而判断DE∥BC,得出DE是△ABC的中位线,证得AA1⊥BC,得到AA1=2,求出h1=2-1=1,同理h2=2-$\frac{1}{2}$,h3=2-$\frac{1}{2}$×$\frac{1}{2}$=2-$\frac{1}{{2}^{2}}$,于是经过第5次操作后得到的折痕D4E4到BC的距离h5=2-$\frac{1}{{2}^{4}}$.
解答 解:连接AA1,
由折叠的性质可得:AA1⊥DE,DA=DA1,
又∵D是AB中点,
∴DA=DB,
∴DB=DA1,
∴∠BA1D=∠B,
∴∠ADA1=2∠B,
又∵∠ADA1=2∠ADE,
∴∠ADE=∠B,
∴DE∥BC,
∴AA1⊥BC,
∴AA1=2,
∴h1=2-1=1,
同理,h2=2-$\frac{1}{2}$,h3=2-$\frac{1}{2}$×$\frac{1}{2}$=2-$\frac{1}{{2}^{2}}$,于是经过第5次操作后得到的折痕D4E4到BC的距离h5=2-$\frac{1}{{2}^{4}}$,
故选A.
点评 本题考查了相似三角形的判定和性质,三角形中位线的性质,平行线等分线段定理,找出规律是解题的关键.
练习册系列答案
相关题目
15.
在四边形ABCD中,AB∥CD,∠A=90°,AB=1,BD⊥BC,BD=BC,CF平分∠BCD交BD、AD于E、F,则△EDF的面积为( )
| A. | 3$\sqrt{2}$-4 | B. | 3$\sqrt{2}$-3 | C. | 3$\sqrt{2}$-2 | D. | 3$\sqrt{2}$-1 |
20.角平分线的尺规作图,其根据是构造两个全等三角形,由作图可知:判断所构造的两个三角形全等的依据是( )
| A. | SSS | B. | ASA | C. | SAS | D. | AAS |