题目内容
| S△GMN |
| S△ABC |
考点:面积及等积变换
专题:
分析:过点E作DE∥AN,交BA的延长线于点D,过点C作CH∥AN,交BA的延长线于点H,连接EF、EN,利用三角形中位线定理和相似三角形的性质可以得到GE=
BE,FG=
BE,然后由AN平分∠BAC,DE∥AN可证到AD=AE,再根据平行线分线段成比例可得
=
=3,同理可得
=
.设ME=x,可得GE=
x,GM═
x,从而有
=
=
,同理可得
=
=
,由
=
,
=
可得
=
=
,
=
=
,即可得到
=
•
•
•
=
.
| 1 |
| 3 |
| 1 |
| 3 |
| BM |
| ME |
| BA |
| AD |
| FN |
| NC |
| 3 |
| 4 |
| 4 |
| 3 |
| 1 |
| 3 |
| S△GMN |
| S△GEN |
| GM |
| GE |
| 1 |
| 4 |
| S△GEN |
| S△GEC |
| GN |
| GC |
| 1 |
| 7 |
| EG |
| BE |
| 1 |
| 3 |
| EC |
| AC |
| 1 |
| 2 |
| S△CEG |
| S△CEB |
| EG |
| BE |
| 1 |
| 3 |
| S△CEB |
| S△ABC |
| EC |
| AC |
| 1 |
| 2 |
| S△GMN |
| S△ABC |
| S△GMN |
| S△GEN |
| S△GEN |
| S△GEC |
| S△CEG |
| S△CEB |
| S△CEB |
| S△ABC |
| 1 |
| 168 |
解答:
解:过点E作DE∥AN,交BA的延长线于点D,过点C作CH∥AN,交BA的延长线于点H,连接EF、EN,如图.
∵点E是AC的中点,点F是AB的中点,
∴EF∥BC,EF=
BC,
∴△GEF∽△GBC,
∴
=
=
=
,
∴GE=
BE,FG=
BE.
∵AN平分∠BAC,DE∥AN,
∴∠BAN=∠CAN,∠BAN=∠ADE,∠CAN=∠AED,
∴∠ADE=∠AED,
∴AD=AE.
∵点E是AC的中点,AC=8,
∴AD=AE=4.
∵DE∥AN,AB=12,AD=4,
∴
=
=3.
同理可得:
=
=
=
=
.
设ME=x,则BM=3x,BE=4x,GE=
x,
∴GM=GE-ME=
x-x=
x,
∴
=
=
=
.
同理可得:
=
=
,
∵
=
,
=
,
∴
=
=
,
=
=
,
∴
=
•
•
•
=
×
×
×
=
.
故答案为:
.
∵点E是AC的中点,点F是AB的中点,
∴EF∥BC,EF=
| 1 |
| 2 |
∴△GEF∽△GBC,
∴
| GE |
| BG |
| FG |
| CG |
| EF |
| BC |
| 1 |
| 2 |
∴GE=
| 1 |
| 3 |
| 1 |
| 3 |
∵AN平分∠BAC,DE∥AN,
∴∠BAN=∠CAN,∠BAN=∠ADE,∠CAN=∠AED,
∴∠ADE=∠AED,
∴AD=AE.
∵点E是AC的中点,AC=8,
∴AD=AE=4.
∵DE∥AN,AB=12,AD=4,
∴
| BM |
| ME |
| BA |
| AD |
同理可得:
| FN |
| NC |
| FA |
| AH |
| FA |
| AC |
| 6 |
| 8 |
| 3 |
| 4 |
设ME=x,则BM=3x,BE=4x,GE=
| 4 |
| 3 |
∴GM=GE-ME=
| 4 |
| 3 |
| 1 |
| 3 |
∴
| S△GMN |
| S△GEN |
| GM |
| GE |
| ||
|
| 1 |
| 4 |
同理可得:
| S△GEN |
| S△GEC |
| GN |
| GC |
| 1 |
| 7 |
∵
| EG |
| BE |
| 1 |
| 3 |
| EC |
| AC |
| 1 |
| 2 |
∴
| S△CEG |
| S△CEB |
| EG |
| BE |
| 1 |
| 3 |
| S△CEB |
| S△ABC |
| EC |
| AC |
| 1 |
| 2 |
∴
| S△GMN |
| S△ABC |
| S△GMN |
| S△GEN |
| S△GEN |
| S△GEC |
| S△CEG |
| S△CEB |
| S△CEB |
| S△ABC |
=
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3 |
| 1 |
| 2 |
=
| 1 |
| 168 |
故答案为:
| 1 |
| 168 |
点评:本题主要考查了等积变换、平行线分线段成比例、三角形中位线定理、相似三角形的判定与性质、等腰三角形的判定与性质等知识,有一定的难度,而由AN平分∠BAC证到
=
,
=
是解决本题的关键.
| BM |
| ME |
| AB |
| AE |
| FN |
| NC |
| AF |
| AC |
练习册系列答案
相关题目