题目内容
(1)求抛物线的函数解析式.
(2)设点D在抛物线上,点E在抛物线的对称轴上,若四边形AODE是平行四边形,求点D的坐标.
(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足是M,是否存在点p,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
考点:二次函数综合题
专题:
分析:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),把点A(-2,0),B(-3,3),O(0,0),代入求出a,b,c的值即可;
(2)首先由A的坐标可求出OA的长,再根据四边形AODE是平行四边形,D在对称轴直线x=-1右侧,进而可求出D横坐标为:-1+2=1,代入抛物线解析式即可求出其横坐标;
(3)分△PMA∽△COB和△PMA∽△BOC表示出PM和AM,从而表示出点P的坐标,代入求得的抛物线的解析式即可求得t的值,从而确定点P的坐标.
(2)首先由A的坐标可求出OA的长,再根据四边形AODE是平行四边形,D在对称轴直线x=-1右侧,进而可求出D横坐标为:-1+2=1,代入抛物线解析式即可求出其横坐标;
(3)分△PMA∽△COB和△PMA∽△BOC表示出PM和AM,从而表示出点P的坐标,代入求得的抛物线的解析式即可求得t的值,从而确定点P的坐标.
解答:解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),
将点A(-2,0),B(-3,3),O(0,0),代入可得:
,
解得:
,
所以函数解析式为:y=x2+2x;
(2)∵AO为平行四边形的一边,
∴DE∥AO,DE=AO,
∵A(-2,0),
∴DE=AO=2,
∵四边形AODE是平行四边形,
∴D在对称轴直线x=-1右侧,
∴D横坐标为:-1+2=1,代入抛物线解析式得y=3,
∴D的坐标为(1,3);
(3)∵点B(-3,3),C(-1,-1),
∴△BOC为直角三角形,∠COB=90°,且OC:OB=1:3,
①若△PMA∽△COB,设PM=t,则AM=3t,
∴点P(2-3t,t),
代入y=x2-2x得(2-3t)2-2(2-3t)=t,
解得t1=0(舍),t2=
,
∴P(
,
);
②,若△PMA∽△BOC,
设PM=3t,则AM=t,点P(2-t,3t),代入y=x2-2x得(2-t)2-2(2-t)=3t,
解得t1=0(舍),t2=5,
∴P(3,15)
综上所述,点P的坐标为(
,
)或(3,15).
将点A(-2,0),B(-3,3),O(0,0),代入可得:
|
解得:
|
所以函数解析式为:y=x2+2x;
(2)∵AO为平行四边形的一边,
∴DE∥AO,DE=AO,
∵A(-2,0),
∴DE=AO=2,
∵四边形AODE是平行四边形,
∴D在对称轴直线x=-1右侧,
∴D横坐标为:-1+2=1,代入抛物线解析式得y=3,
∴D的坐标为(1,3);
(3)∵点B(-3,3),C(-1,-1),
∴△BOC为直角三角形,∠COB=90°,且OC:OB=1:3,
①若△PMA∽△COB,设PM=t,则AM=3t,
∴点P(2-3t,t),
代入y=x2-2x得(2-3t)2-2(2-3t)=t,
解得t1=0(舍),t2=
| 7 |
| 9 |
∴P(
| 1 |
| 3 |
| 7 |
| 9 |
②,若△PMA∽△BOC,
设PM=3t,则AM=t,点P(2-t,3t),代入y=x2-2x得(2-t)2-2(2-t)=3t,
解得t1=0(舍),t2=5,
∴P(3,15)
综上所述,点P的坐标为(
| 1 |
| 3 |
| 7 |
| 9 |
点评:本题着重考查了待定系数法求二次函数解析式、平行四边形的性质、相似三角形的判定和性质等知识点,综合性强,同时也考查了学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关题目
矩形周长为40,一边长为a,则表示矩形面积的代数式是( )
| A、a(20-a) |
| B、a(20+a) |
| C、a(40-a) |
| D、a(40-2a) |
?ABCD的对角线AC、BD相交于O,AC=4,BD=5,BC=3,则△BOC的周长为( )
| A、7.5 | B、12 |
| C、6 | D、无法确定 |