题目内容

比较下面每小题中两个算式结果的大小(在横线上填“>”、“<”或“=”).

⑴32+42 2×3×4;⑵22+22 2×2×2;⑶12+ 2×1×

⑷(-2) 2+52 2×(-2)×5;⑸

通过观察上面的算式,请你用字母来表示上面算式中反映的一般规律.

(1)>(2)=(3)>(4)>(5)>; ≥2ab(当a=b时取等号). 【解析】试题分析:分别根据有理数的乘方法则求出各数的值,再根据有理数比较大小的法则比较出各数的大小,并总结出规律. 试题解析:(1)∵32+42=25,2×3×4=24, ∴32+42>2×3×4; (2)∵22+22=8,2×2×2=8, ∴22+22=2×2×2; (3)∵12+()...
练习册系列答案
相关题目

已知x2+3x-1=0,求x-和x2+的值.

-3,11 【解析】分析:首先将3x移项,再方程两边同除以x得出即可,再利用,方程两边同时平方求出即可. 本题解析: 因为 , 所以 , 将上式子两边同时除以x(x≠0), 所以 , , , 则.故答案为:-3,,11.

一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )

A.108° B.90° C.72° D.60°

C. 【解析】 试题分析:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,故这个正多边形的每一个外角等于:360°÷5 =72°.故选C.

如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.

(1)求证:AE=AF;

(2)求证:BE= (AB+AC).

(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)根据角平分线的性质及平行线的性质易∠AEF=∠AFE,即可得AE=AF;(2)作CG∥EM,交BA的延长线于G,已知AC=AG,根据三角形中位线定理的推论证明BE=EG,再利用三角形的中位线定理即可证得结论. 试题解析: (1)∵DA平分∠BAC, ∴∠BAD=∠CAD, ∵AD∥EM, ∴∠BAD=...

如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为(   )

A. 7 B. 8 C. 9 D. 10

B 【解析】试题分析:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.

y的3倍与x的4倍的和是负数用不等式表示为____________.

3y+4x<0 【解析】由题意得:y的3倍表示为3y,x的4倍表示为4x, ∵y的3倍与x的4倍的和是负数, ∴3y+4x<0, 故答案为:3y+4x<0.

如图,∠AOB内一点P,分别画出P关于OA、OB的对称点P1、P2连P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长为_______.

5cm 【解析】∵P、P1,P、P2关于OA、OB对称, ∴PM=P1M,PN=P2N, ∴△PMN的周长=P1P2, ∴△PMN的周长是5 cm.

如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.

            

(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;

(2)判断四边形ABDF是怎样的四边形,并说明理由;

(3)若AB=6,BD=2DC,求四边形ABEF的面积..

(1)见解析;(2)平行四边形;(3) 【解析】试题分析:(1)从图上及已知条件容易看出△BDE≌△FEC,△BCE≌△FDC,△ABE≌△ACF.判定两个三角形全等时,必须有边的参与,所以此题的关键是找出相等的边. (2)由(1)的结论容易证明AB∥DF,BD∥AF,两组对边分别平行的四边形是平行四边形. (3)EF∥AB,EF≠AB,四边形ABEF是梯形,只要求出此梯形的面积...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网